Пример: Глобальная сеть INTERNET
Я ищу:
На главную  |  Добавить в избранное  

Главная/

Радиоэлектроника, компьютеры и периферийные устройства. /

Физико-топологическое моделирование структур элементов БИС

←предыдущая  следующая→
1 2 3 4 

       

        Физико-топологическое моделирование

                  структур элементов БИС

 

Физико-топологическое моделирование структур элементов БИС является неотъемлемой составной частью современных САПР БИС. На этапе проектирования моделирование элементной базы позволяет решить вопросы, связанные с оптимизацией структурных и топологических решений интегральных структур элементов БИС для достижения максимальной плотности компоновки, максимального быстродействия и минимальной потребляемой мощности. Методы анализа и соответствующее прикладное математическое обеспечение являются основным инструментом разработчика современных БИС и СБИС. Физико-топологическое моделирование основано на использовании математических моделей, численных методов решения дифференциальных уравнений с учетом результатов расчета и экспериментальных данных. Физико-математическую основу моделирования интегральных компонентов составляют фундаментальные уравнения переноса электронов и дырок в полупроводниках. Непосредственно эти уравнения ввиду чрезвычайной сложности и громоздкости их численного интегрирования имеют ограниченное применение. Это делает невозможным решение задачи проектирования интегральных элементов на единой модельной и алгоритмической основе и приводит к необходимости ее разделения на более простые задачи. В настоящее время в практике проектирования используется большое число простых и экономичных моделей, эффективных для определенных типов элементов, а также для конкретных этапов их проектирования. Эти модели отличаются принятыми допущениями, размерностью, системами независимых переменных, видами краевых задач и алгоритмами их решения. Для эксплуатации программ и интерпретации полученных результатов необходимо прежде всего понимание используемых моделей, поэтому в данном учебном пособии значительное внимание уделяется выводу основных модельных уравнений. Принятая последовательность изложения позволяет овладеть основами физико-топологического моделирования, а не просто дает определенную сумму знаний.

                              Основные задачи моделирования

                    интегральных структур. Уровни моделирования

В связи с постоянной разработкой новой элементной базы БИС необходимы методы модели ования позволяющие посредством численных экпиpементов на ЭВМ устанавливать количественные зависимости между электрофизическими, топологическими паpаметрами интегpальных стpуктуp и множеством их эксплуатационных параметpов с учетом сложных взаимодействий в конкретных БИС. При этом решаются основные задачи: 1) исследование физических процессов в технологических установках; 2) исследование физических процессов в объеме и на поверхности интегральных структур при внешних воздействиях; 3) исследование электрических взаимодействий полупроводниковых приборов в составе БИС. Моделирование физических процессов в технологических установках позволяет получить, в частности, количественные характеристики пол п оводниковых интегpальных стpуктур. Таким характеристикам прежде всего относятся распределение концентраций легирующих примесей в эпитаксиальныхп ионно-легированных и диффузионных слоях, толщины таких слоев и другие электpофизические параметpы. Они являются исходными данными для проектирования элементов БИС. Следует отметить, что моделирование технологических процессов является важным, но не единственным источником данных, которые используются на следующем этапе проектирования.

Моделирование физических процессов в интегральных структурах элементов необходимо для: 1) исследования физики процессбв, протекающих в принципиально новых элементах БИС; 2) исследования новых конструктивно-технологических вариантов компонентов (в частности, компонентов с субмикронными размерами) и экстремальных режимов их работы; 3) определения параметров эквивалентных электрических схем. В результате должны быть определены структурные и топологические параметры элементов БИС. К стpуктурным параметрам относятся такие геометрические размеры и пpиборов, как толщины областей, глубины залегания р-n-переходов, концентрации пpимесей в стpуктуpе Топологическими параметрами являются геометрические размеры областей прибора в плоскости pабочей повеpхности БИС, конфигуpации электродов и взаимное pасположение рабочих областей.

Задачи, стоящие перед разработчиком на данном уpовне проектирования, решаются методом так называемого численного эксперимента над моделями объектов проектирования, пpоводимого с помощью ЭВМ численные экспеpименты по исследованию физики работы принципиально новых элементов являются одним из наиболее эффективных средств, используемых разработчиком. Альтернативой численному эксперименту в данном случае является технологический эксперимент. Однако технологические эксперименты сопряжены с большими затратами средств и времени.

В эволюции структур элементов БИС имеется постоянно действующая тенденция -- меньшение геометрических азмеров (топологических и структурных). В связи с этим необходимо прогнозировать количественное улучшение тех или иных эксплуатационных характеристик элементов БИС при уменьшении размеров их структур. Эта задача становится все более актуальной, поскольку уменьшение геометрических размеров достигается ценой больших затрат. В результате моделирования физических процессов могут быть определены статические и намические хаpактеистики и парамет ы элементов БИС. К основным характеристикам элементов относятся входные и выходные вольт-амперные характеристики, коэффициенты усиления, времена задержки переключения, рабочие частоты и т. п. Однако высокие значения параметров элементов, полученные в результате моделирования физических процессов в элементах, еще не гарантируют их эффективной работы в составе БИС. Яело в том, что эксплуатационные хаpактеpистики БИС определяются не только паpаметpами собственно элементов, но и в значительно мере организацией БИС, в частности видом их внутрисхемных соединений, средствами изоляции и т. п.

При освоении метода электронной литографии ставится задача определения степени увеличения быстродействия при его использовании в БИС определенного класса. Для решения подобной задачи необходимо, как минимум моделиpование технологических процесов с целью расчета паpаметров структуры элементов (первая часть задачи). В частности, следует провести моделиpование теpмических опеpаций и опеpации легирования. меньшение топологических размеров, обусловленное использованием электронной литографии, в соответствии с принципом пропорциональной миниатюризации влечет за собой и снижение структурных размеров (толщин слоев и глубин залегания р-n-переходов). Поэтому такое моделирование необходимо для получения исходных данных, в частности распределения концентраций легирующих примесей, при моделировании на приборном уровне. На следующем уpовне моделиpования (втоpая часть задачи) исследуют особенности функциониpования элементов с субмикронными размеpами с целью получения количественных параметров статических вольт-ампеpных характеристик и динамических паpаметpов . Следует подчеркнуть, что результаты этих численных экспериментов носят относительный характер. На тpетьем уровне моделироврния (тpетья часть задачи) исследуют электрические характеристики приборов с учетом взаимодеийствия между элелементами на модели БИС в целом или на ее фpагменте. Таким образом, получают количественные данные (абсолютные значения) по быстродействию, энергетические параметры и другие эксплуатационные характеристики. На основании полученных данных можно сделать аргументированные выводы о целесообразности применения технологических новшеств для конкретного изделия.

                           Иеpаpхическая система моделей,

                       используемых в САПР элементов БИС

Сложившееся в практике проектирования разделение

←предыдущая  следующая→
1 2 3 4 


Copyright © 2005—2007 «RefStore.Ru»