Пример: Глобальная сеть INTERNET
Я ищу:
На главную  |  Добавить в избранное  

Главная/

Радиоэлектроника, компьютеры и периферийные устройства. /

Развитие ИВТ, применение информатики в экономике

←предыдущая  следующая→
1 2 3 4 

Содержание:

 

1.    Этапы развития вычислительной техники.

2.    История создания Internet.

3.    Применение информатики и ВТ в экономике.

4.    Список используемой литературы.

1. Этапы развития вычислительной техники.

Потребность в вычислениях возникла у человека давно. А по мере роста потребностей и задач, которые ставило перед собой человечество, росло значение и необходимость вычислений. Эта необходимость и заставила искать пути механизации счета.

В отличии от простейших счетных инструментов, типа счетов или абака (доска с вертикальными прорезями, по которым передвигали какие-нибудь предметы), в арифметической машине вместо предметного представления чисел использовалось их представление в виде углового положения оси или колеса, которое несет эта ось. Одна из первых таких машин была создана в 1642 году французским ученым Блезом Паскалем. Для выполнения арифметических операций Паскаль заменил поступательное перемещение костяшек в абаковидных инструментах на вращательное движение оси (колеса), так что в его машине сложению чисел соответствовало сложение пропорциональных им углов. Машина Паскаля была практически первым суммирующим механизмом, построенным на совершенно новом принципе, при котором считают колеса. Она произвела на современников огромное впечатление.

Труды Паскаля оказали заметное влияние на весь дальнейший ход развития вычислительной техники. Они послужили основой для создания большого количества всевозможных систем суммирующих машин.

В 1694 году Лейбниц создает первый в мире арифмометр - машину, предназначенную для выполнения четырех арифметических действий.. В ее основе лежал принцип ступенчатого валика - цилиндра с зубцами разной длины, которые взаимодействовали со счетным колесом. На этом же принципе в 1820 году был построен арифмометр Томаса - первая счетная машина, которая изготовлялась серийно.

Но как не блестяще был век механических арифмометров, но и он исчерпал свои возможности. Людям нужны были более энергичные помощники. Это заставило искать пути совершенствования вычислительной техники, но уже не на механической, а на электромеханической основе.

Огромные заслуги в деле создания вычислительных машин принадлежат англичанину Чарльзу Бэббиджу. В период между 1820 и 1856 годами он предпринял попытку построить «аналитическую машину», способную производить серию арифметических действий в определенной последовательности. Основные элементы, предложенные Бэббиджем, такие, как данные и команды, вводимые в машину, условная передача управления, основанная на полученных результатах, были так хорошо разработаны, что в первых ЭВМ, появившихся в середине XX века, они были почти такими же, как у Бебиджа. Он не смог до конца реализовать свои замыслы, так как его идеи намного обогнали технические возможности его времени.

В конце XIX века Герман Холлерит в Америке изобрел счетно-перфорационные машины, данные в которые вводились с помощью перфокарт. Он основал фирму, давшую впоследствии начало известной фирме по производству вычислительной техники IBM.

К 30-м годам XX века стала очевидной связь между релейными схемами и алгеброй логики. На электромагнитных реле создавали логические схемы для вычислительных машин, оперирующих перфокартами. Эти машины могли выполнять довольно сложные арифметические действия.

Во время второй мировой войны ускоренными темпами развивалась электронная техника. Первая чисто релейная машина была создана в 1941 году немецким инженером Цузе. Его машина Ц-3 состояла из 2600 электромагнитных реле, на которых было построено арифметическое устройство и память на 64 двоичных числа. Управлялась машина программой, задаваемой перфорированной ленты. Машина ЭНИАК, построенная Дж. В. Мочли и Д. П. Эккертом, начала работать в 1946 г. В США. В ней было использовано свыше 18 тыс. электронных ламп и 1.5 тыс. реле. Современные теоретические основы построения и функционирования ЭВМ были сформулированы выдающимся математиком Джоном фон Нейманом в 1946-1947 гг. В проекте «Принстонской машины». Здесь была изложена идея представления обрабатываемых данных и программы обработки в числовой форме, идея размещения данных и программы в памяти машины. Для упрощения логических схем машин фон Нейман предложил использовать двоичную систему счисления.

В 1944 году, американский физик и математик Говард Айкен совместно с группой инженеров фирмы IBM закончил работу над первым вариантом своей универсальной машины, известной под названием «Марк-1». Машина была передана Гарвардскому университету и эксплуатировалась в течении многих лет. Эта программно управляемая вычислительная машина весом 5 т. и стоимостью 500 тыс. долларов предназначалась для баллистических расчетов ВМС США. Как и машины Цузе, она была построена на электромеханических реле и управлялась при помощи команд, закодированных на бумажной перфоленте. Машина производила умножение 23-значных чисел за 3 с и могла легко настраиваться на решение разнообразных задач оборонного характера, возникающих в ходе войны.

Вообще, всю историю развития вычислительной техники можно разделить на эру простейших машин, эру радиоламп, эру транзисторов и эру интегральных схем. Но в настоящее время более распространено иное деление по периодам развития компьютерной техники - по поколениям машин. Каждому поколению свойственны определенные характеристики.

Предки нынешних машин - ЭВМ первого поколения - ламповые гиганты, вобрали в себя все премудрости электроники 40-х и начала 50-х годов нашего столетия. Жили они не очень долго - до середины 50-х годов. Выпускались же они значительно дольше и эксплуатировались вплоть до 70-х годов.

Характерными чертами машин первого поколения можно считать не только использование электронных ламп в триггерах и вспомогательных схемах, но и некоторые другие особенности. Так, в Кембриджской машине «Эдсак», построенной в начале 50-х годов, была впервые реализована идея иерархической структуры памяти, т. е. Использовано несколько запоминающих устройств, отличающихся по емкости и быстродействию.

Еще, так сказать, в недрах первого поколения стали зарождаться машины нового типа - второго поколения. Здесь главную роль играют уже полупроводники. Вместо громоздких и горячих электронных ламп стали употребляться миниатюрные и «теплые» транзисторы. Машины на транзисторах обладали более высокой надежностью, меньшим употреблением энергии, более высоким быстродействием. Их размеры настолько сократились, что конструкторы стали поговаривать уже о настольных вычислительных машинах. Появились возможности увеличения в сотни раз оперативной памяти, программирования на так называемых алгоритмических языках. Машин также обладали развитой и совершенной системой ввода-вывода. Но появившиеся в начале 70-х годов машин третьего поколения постепенно оттеснили полупроводниковые машины.

Появление новых ЭВМ неразрывно связано с достижением микроэлектроники, основным направлением развития которой явилась интеграция элементов электронных схем. На одном небольшом кристалле полупроводника площадью в несколько квадратных миллиметров стали изготовлять уже не один, а несколько транзисторов и диодов, объединенных в интегральную схему, ставшей основой машин третьего поколения. Прежде всего произошла миниатюризация размеров машин, а вследствие этого появилась возможность каждый раз увеличивать рабочую частоту и, следовательно, быстродействие машины. Но главным достоинством было то, что электронный мозг перерабатывать теперь не только числа, но и слова, фразы, тексты, т. е. оперировать с буквенно-цифровой информацией. Изменилась форма общения человека с машиной, которою разбили на отдельные независимые модули: центральный процессор

←предыдущая  следующая→
1 2 3 4 


Copyright © 2005—2007 «RefStore.Ru»