Пример: Глобальная сеть INTERNET
Я ищу:
На главную  |  Добавить в избранное  

Главная/

Программирование, базы данных. /

Экономическая Информатика

←предыдущая следующая→
1 2 3 4 

выражены в абстрактном виде с помощью математических соотношений.

Основные принципы составления модели сводятся к следующим двум концепциям:

1.      При формулировании задачи необходимо достаточно широко охватить моделируемое явление. В противном случае модель не даст глобального оптимума и не будет отражать  суть дела. Опасность состоит в том, что оптимизация одной части  может осуществляться за счет других и в ущерб общей организации.

2.      Модель должна быть настолько проста, насколько это возможно. Модель должна быть такова, чтобы ее можно было оценить, проверить и понять, а результаты полученные из модели должны быть ясны как ее создателю, так и лицу, принимающему решение.

На практике эти концепции часто вступают в конфликт, прежде всего из-за того, что в сбор и ввод данных, проверку ошибок и интерпретацию результатов включается человеческий элемент, что ограничивает размеры модели, которая  может быть проанализирована удовлетворительно. Размеры модели используются как лимитирующий фактор, и если мы хотим увеличить широту охвата, то приходится уменьшать детализацию и наоборот.

Введем понятие иерархии моделей, где широта охвата увеличивается, а детализация уменьшается по мере того, как мы переходим на более высокие уровни иерархии. На более высоких уровнях в свою очередь формируются ограничения и цели для более низких уровней.

При построении модели необходимо учитывать также и временной аспект: горизонт планирования в основном увеличивается с ростом иерархии. Если модель долгосрочного планирования всей корпорации может содержать мало каждодневных текущих деталей то модель планирования производства отдельного подразделения состоит в основном из таких деталей.

      При формулировании задачи необходимо учитывать следующие три аспекта:

1.      Исследуемые факторы: Цели исследования определены довольно свободно и в большой степени зависят от того, что включено в модель. В этом отношении Легче инженерам, так как исследуемые факторы у них обычно стандартны, а целевая функция выражается в терминах максимума дохода, минимума затрат или , возможно, минимума потребления какого-нибудь ресурса. В то же время социологи, к примеру, обычно задаются  целью "общественной полезности" или в этом роде и оказываются в сложном положении, когда им приходится приписывать определенную "полезность" различным действиям, выражая ее в математической форме.

2.      Физические границы: Пространственные аспекты исследования требуют детального рассмотрения. Если производство сосредоточено более чем в одной точке, то необходимо учесть в модели соответствующие распределительные процессы. Эти процессы могут включать складирование, транспортировку, а также задачи календарного планирования загрузки оборудования.

3.      Временные границы: Временные аспекты исследования приводят к серьезной дилемме. Обычно горизонт планирования хорошо известен, но надо сделать выбор: либо моделировать систему в динамике, с тем, чтобы получить временные графики, либо моделировать статическое функционирование в определенный момент времени.

Если моделируется динамический (многоэтапный) процесс, то размеры модели увеличиваются соответственно числу рассматриваемых периодов времени (этапов). Такие модели обычно идейно просты, так что основная трудность заключается скорее в возможности решить задачу на ЭВМ за приемлемое время, чем в умении интерпретировать большой объем выходных данных. с Зачастую бывает достаточно построить модель системы в какой-то заданный момент времени, например в фиксированный год, месяц, день, а затем повторять расчеты через определенные промежутки времени. Вообще, наличие ресурсов в динамической модели часто оценивается приближенно и определяется факторами, выходящими за рамки модели. Поэтому необходимо тщательно проанализировать, действительно ли необходимо знать зависимость от времени изменения характеристик модели, или тот же результат можно получить, повторяя статические расчеты для ряда различных фиксированных моментов.

3. Составление алгоритма.

Алгоритм - это конечный набор правил, позволяющих чисто механически решать любую конкретную задачу из некоторого класса однотипных задач. При этом подразумевается:

¨      исходные данные могут изменяться в определенных пределах: {массовость алгоритма}

¨      процесс применения правил к исходным данным (путь решения задачи) определен однозначно: {детерминированность алгоритма}

¨      на каждом шаге процесса применения правил известно, что считать результатом этого процесса:  {результативность алгоритма}

Если модель описывает зависимость между исходными данными и искомыми величинами, то алгоритм представляет собой последовательность действий, которые надо выполнить, чтобы от исходных данных перейти к искомым величинам.

Удобной формой записи алгоритма является блок схема. Она не только достаточно наглядно описывает алгоритм, но и является основой для составления программы. Каждый класс математических моделей имеет свой метод решения, который реализуется в алгоритме. Поэтому очень важной является классификация задач по виду математической модели. При таком подходе задачи, различные по содержанию, можно решать с помощью одного и того же алгоритма. Алгоритмы задач принятия решений, как правило, настолько сложны, что без применения ЭВМ реализовать их практически невозможно.

4. Составление программы.

Алгоритм записывают с помощью обычных математических символов. Для того, чтобы он мог быть прочитан ЭВМ необходимо составить программу. Программа - это описание алгоритма решения задачи, заданное на языке ЭВМ. Алгоритмы и программы объединяются понятием "математическое обеспечение". В настоящее время затраты на математическое обеспечение составляют примерно полторы стоимости ЭВМ, и постоянно происходит дальнейшее относительное удорожание математического обеспечения. Уже сегодня предметом приобретения является именно математическое обеспечение, а сама ЭВМ лишь тарой, упаковкой для него.

Далеко не для каждой задачи необходимо составлять индивидуальную программу. На сегодняшний день созданы мощные современные программные средства - пакеты прикладных программ ( ППП ).

ППП - это объединение модели, алгоритма и программы. Зачастую, к задаче можно подобрать готовый пакет, который прекрасно работает, решает многие задач, среди которых можно найти и наши. При таком подходе многие задачи будут решены достаточно быстро, ведь не надо заниматься программированием.

Если нельзя использовать ППП для решения задачи без изменения его или модели, то нужно либо модель подогнать под вход ППП, либо доработать вход ППП, чтобы в него можно было ввести модель.

Такую процедуру называют адаптацией. Если подходящий ППП находится в памяти ЭВМ, то работа пользователя заключается в том, чтобы ввести необходимые искомые данные и получить требуемый результат.

5. Ввод исходных данных.

Прежде чем ввести исходные данные в ЭВМ, их, естественно, необходимо собрать. Причем не все имеющиеся на производстве исходные данные, как это часто пытаются делать, а лишь те, которые входят в математическую модель. Следовательно, сбор исходных данных не только целесообразно, но и необходимо производить лишь после того, как будет известна математическая модель. Имея программу и вводя в ЭВМ исходные данные, мы получим решение задачи.

6. Анализ полученного решения

К сожалению достаточно часто математическое моделирование смешивают с одноразовым решением

←предыдущая следующая→
1 2 3 4 


Copyright © 2005—2007 «RefStore.Ru»