Пример: Глобальная сеть INTERNET
Я ищу:
На главную  |  Добавить в избранное  

Главная/

Физика /

Физикаподкритического ядерного реактора

←предыдущая следующая→
1 2 3 4 

сечением процесса деления (или любого другого процесса) заданной энергией Е, соответствующей энергии налетающих нейтронов. Как видно из предыдущей формулы, эффективное сечение имеет размерность площади(см2). Оно имеет вполне понятный геометрический смысл:  это площадка, при попадании в которую происходит интересующий нас процесс. Очевидно, если сечение большое, процесс идёт интенсивно, а маленькое сечение соответствует малой вероятности попадания в эту площадку, следовательно, в этом случае процесс происходит редко.

      Итак, пусть для некоторого ядра мы имеем достаточно большое эффективное сечение процесса деления при этом, при делении наряду с двумя большими осколками А1 и А2 могут вылететь несколько нейтронов. Средне число дополнительных нейтронов называется коэффициентом размножения и обозначается символом k . Тогда реакция идёт по схеме

                                                      n+A           A1+A2+k n.

Родившиеся в этом процессе нейтроны, в свою очередь, реагируют с ядрами А, что даёт новые реакции деления и новое, ещё большее число нейтронов. Если k  > 1, такой цепной процесс происходит с нарастающей интенсивностью и приводит  к взрыву с выделением огромного кол-ва энергии. Но процесс этот можно контролировать. Не все нейтроны обязательно попадут в ядро А: они могут выйти наружу через внешнюю границу реактора, могут поглотиться в веществах, которые специально вводятся в реактор. Таким образом, величину k , можно уменьшить до некоторой kэф, которая равна 1 и лишь незначительно её превышает. Тогда можно успевать отводить производимую энергию и работа реактора становится устойчивой. Тем не менее в этом случае реактор работает в критическом режиме. Неполадки с отводом энергии привели бы к нарастающей цепной реакции и катастрофе. Во всех действующих системах предусмотрены меры безопасности, однако аварии, с очень малой вероятностью, могут происходить и, к сожалению происходят.

   Как выбирается рабочее вещество для атомного реактора?  Необходимо, чтобы в топливных элементах присутствовали ядра изотопа с большим эффективным сечением деления. Единица измерения сечения 1 барн = 10-24 см2. Мы видим две  группы значений сечений: ( 233U, 235U, 239Pu ) и малые(232Th,238U). Для того, чтобы представить себе разницу, вычислим, какое расстояние должен пролететь нейтрон, чтобы произошло событие деления. Воспользуемся для этого формулой N=N0nl эф. Для  N=N0=1 имеем  Здесь n- плотность ядер, , где p- обычная плотность и m =1,66*10-24г- атомная единица массы. Для урана и тория n = 4,8.1022 см3. Тогда для 235U имеем l = 10см, а для 232Th  l = 35 м. Таким образом, для реального осуществления процесса деления следует использовать такие изотопы как 233U, 235U, 239Pu. Изотоп 235U в небольшом кол-ве содержится в природном уране состоящем в основном из 238U, поэтому в качестве ядерного топлива обычно используют уран, обогащённый изотопом 235U. При этом в процессе работы реактора вырабатывается значительное кол-во ещё одного расщепляющегося изотопа-   239Pu. Плутоний получается в результате цепочки реакций

                    238U + n            ( )239U            ( )239Np               ( )239Pu,

где  означает излучение фотона, а - - распад по схеме

                                                         Z           (Z+1)+e +v.

Здесь Z  определяет заряд ядра, так что при распаде происходит к следующему элементу таблицы Менделеева с тем же А, е- электрон и v-электронное антинейтрино. Необходимо отметить   также, что изотопы А1, А2, получающиеся в процессе деления, как правило, являются радиоактивными с временами полураспада от года  до сотен тысяч лет, так что отходы атомных электростанций, представляющие собой выгоревшее топливо, очень опасны и требуют специальных мер для хранения. Здесь возникает проблема геологического хранения, которое должно обеспечить надёжность на миллионы лет вперёд. Несмотря на очевидную пользу атомной энергетики, основанной на работе ядерных реакторов в критическом режиме, она имеет и серьезные недостатки. Это, во-первых, риск аварий, аналогичных Чернобыльской, и, во-вторых, проблема радиоактивных отходов. Предложение использовать для атомной энергетики реакторы, работающие в подкритическом режиме, полностью разрешает первую проблему и в значительной степени облегчает решение второй.

Ядерный реактор в подкритическом режиме как усилитель энергии.

Представим себе, что мы собрали атомный реактор, имеющий эффективный коэффициент размножения нейтронов kэф немного меньше единицы. Облучим это устройство постоянным внешним потоком нейтронов N0. Тогда каждый нейтрон (за вычетом вылетевших наружу и поглощённых, что учтено в kэф) вызовет деление, которое даст дополнительный поток N0k2эф. Каждый нейтрон из этого числа снова произведёт в среднем kэф нейтронов, что даст дополнительный поток N0kэф и т.д. Таким образом, суммарный поток нейтронов, дающих процессы деления, оказывается равным

                                N = N0 ( 1 + kэф + k2эф + k3эф  + ...) = N0 kn эф .

Если kэф > 1, ряд в этой формуле расходится, что и является отражением критического поведения процесса в этом случае. Если же kэф < 1, ряд благополучно сходится и по формуле суммы геометрической прогрессии имеем

                                                          

Выделение энергии в единицу времени ( мощность ) тогда определяется выделением энергии в процессе деления,

                                                   

где к <1 - коэффициент, равный отношению числа нейтронов, вызвавших деление, к полному

←предыдущая следующая→
1 2 3 4 


Copyright © 2005—2007 «RefStore.Ru»