Пример: Глобальная сеть INTERNET
Я ищу:
На главную  |  Добавить в избранное  

Главная/

Физика /

Физика

Документ 1 | Документ 2 | Документ 3 | Документ 4 | Документ 5 | Документ 6 | Документ 7 | Документ 8 | Документ 9 | Документ 10 | Документ 11 | Документ 12 | Документ 13 | Документ 14 | Документ 15 | Документ 16 | Документ 17 | Документ 18 | Документ 19 | Документ 20 | Документ 21 | Документ 22 | Документ 23 | Документ 24 | Документ 25 | Документ 26 | Документ 27 | Документ 28

Билет 6

1.     Кинетическая и потенциальная энергия. Закон сохранения энергии в механике. Вычислите потенциальную энергию тела в поле силы тяжести в заданной системе отсчета.

2.     Непрерывный и линейчатый спектры. Спектры испускания и поглощения. Спектральный анализ и его применение.

3.     (задача на работу и мощность тока)

1. Энергией – называется скалярная физическая величина, являющаяся единой мерой единой мерой различных форм движения материи и мерой перехода движения материи из одних форм в другие.

Кинетическая энергия материальной точки или тела является мерой их механического движения, зависящей от скоростей, зависящей от скоростей их движения в данной инерциальной системе отсчета. Кинетическая энергия – это энергия движения, зависящая от массы тела и скорости его движения. Любое движущееся тело обладает кинетической энергией. Экспериментально установлено, что по совершенной работе можно судить об изменении кинетической энергии. На основании этого утверждения можно получить точную математическую формулу кинетической  энергии. Будем считать, что единственным результатом работы силы на пути будет сообщение телу кинетической энергии: Е=А, но А=F*S, а F= ma. Из кинематики известно, что путь при равноускоренном движении при начальной скорости равной 0 рассчитывается по формуле S=V^2/2a,

От сюда получаем E=FS=maV^2/2a=mV^2/2. Кинетическая энергия равна работе, поэтому измеряется в Дж.

Теорема о кинетической энергии: изменение кинетической энергии тела при его переходе из одного состояния в другое равно работе всех сил, действующих на это тело. Работа любых сил является мерой измерения кинетической энергии тела. Действие сил, работа которых на данном участке траектории положительна, приводит к увеличению кинетической энергии тела (и наоборот). Потенциальной энергией называется энергия, которая определяется взаимным расположением тел или частей одного тела.

Потенциальная энергия тела, поднятого над Землей, - это энергия взаимодействия тела и Земли с помощью гравитационных сил. Потенциальная энергия – это величина, равная произведению массы тела на модуль ускорения свободного падения и на высоту тела над поверхностью Земли.

Потенциальной энергией называется часть механической энергии, зависящая от взаимного расположения ее частей и их положения во внешнем силовом поле.

Закон сохранения механической энергии: механическая энергия системы, в которой действуют потенциальные силы, сохраняется постоянной в процессе движения системы.

2. Непрерывный и линейчатый спектры. Спектры испускания и поглощения. Спектральный анализ и его применение.

Спектр – это цветные полосы, получающиеся в результате разложения света призмой )или другим предметом) по длинам волн. Различные вещества при поглощении энергии сами становятся источниками света и могут создавать излучения разнообразных составов, спектры которых исследуют с помощью специальных приборов – спектроскопов. Все спектры можно разделить на три типа: непрерывные, линейчатые и спектры поглощения.

Непрерывные спектры. Солнечный спектр, спектр электрической лампы являются непрерывными. В спектре нет разрывов, и на экране можно видеть сплошную цветную полоску. Такие спектры дают тела, находящиеся в твердом или жидком состоянии. Для получения видимого непрерывного спектра нужно нагреть тело до высокой температуры. Характер непрерывного спектра в сильной степени зависит от взаимодействия атомов друг с другом.

Линейчатые спектры. Их дают все вещества, находящиеся в газообразном атомарном (но не молекулярном) состоянии. В этом случае свет излучают атомы, которые практически не взаимодействуют друг с другом. Это самый фундаментальный тип спектров. Обычно для наблюдения линейчатых спектров используют свечение паров вещества в пламени или свечение газового разряда в трубке, наполненной исследуемым газом.

Спектры поглощения. Если пропускать белый свет сквозь холодный неизлучающий газ, то на фоне непрерывного спектра источника появляются темные линии. Газ поглощает наиболее свет как раз тех длин волн, которые он испускает в сильно нагретом состоянии. Темные линии на фоне непрерывного спектра – это линии поглощения, образующие в совокупности спектр поглощения.

Опытным путем оказалось, что светящиеся пары любого химического элемента излучают только одному ему свойственный спектр – набор монохроматических излучении, каждому из которых в спектре принадлежит своя линия. Анализ спектров дает возможность обнаружить и магнитные поля. При воздействии магнитного поля на излучающие атомы появляются линии- спутники. По спектрам ученые определяют энергетические уровни атомов и молекул. С появлением лазера появился новый раздел спектроскопии – лазерная спектроскопия. Лазеры с перестраиваемой частотой позволяют подобрать такую частоту излучения, при которой будет возбужден вполне определенный уровень изучаемого атома или молекулы. Лазеры с перестраиваемой частотой дают возможность достигнуть предельной чувствительности спектрального анализа – обнаруживать атомы элемента с концентрацией, скажем, в 100 атомов на 1 см^3 объем газа.

Спектральный анализ – это метод определения химического состава вещества по его спектру.


Copyright © 2005—2007 «RefStore.Ru»