←предыдущая следующая→
1 2 3
Введение
Решающую роль в восприятии окружающего мира играют характеристики, сохраняющиеся (в замкнутых системах). Среди них имеются такие универсальные, как масса, количество движения, момент количества движения, энергия и энтропия.
В учении о теплообмене рассматриваются процессы распространения теплоты в твердых, жидких и газообразных телах. Эти процессы по своей физико-механической природе весьма многообразны, отличаются большой сложностью и обычно развиваются в виде целого комплекса разнородных явлений.
Перенос теплоты может осуществляться тремя способами: теплопроводностью, конвекцией и излучением, или радиацией. Эти формы глубоко различны по своей природе и характеризуются различными законами.
Процесс переноса теплоты теплопроводностью происходит между непосредственно соприкасающимися телами или частицами тел с различной температурой. Учение о теплопроводности однородных и изотропных тел опирается на весьма прочный теоретический фундамент. Оно основано на простых количественных законах и располагает хорошо разработанным математическим аппаратом. Теплопроводность представляет собой, согласно взглядам современной физики, молекулярный процесс передачи теплоты.
При определении переноса теплоты теплопроводностью в реальных телах встречаются известные трудности, которые на практике до сих пор удовлетворительно не решены. Эти трудности состоят в том, что тепловые процессы развиваются в неоднородной среде, свойства которой зависят от температуры и изменяются по объему; кроме того, трудности возникают с увеличением сложности конфигурации системы.
Уравнение теплопроводности имеет вид:
(1)
выражает тот факт, что
изменения теплосодержания определенной массы вещества, заключенного в единице
объема, определяется различием между притоком и вытеканием энергии - дивергенцией плотности теплового потока
, при условии что внутренних источников энергии нет. Тепловой
поток пропорционален градиенту температуры и направлен в сторону ее падения;
- коэффициент теплопроводности.
При разработке методов иследования композиционных материалов весьма трудно и, по-видимому, не имеет смысла (в тех случаях, когда это можно практически реализовать) полностью учитывать структуру копмозита. В связи с этим возникла необходимость связать механику композитных материалов с механизмами элементов конструкций, развивающимися обычно в рамках континуальных процессах. Эта задача решается в процессе создания теории определения приведенных свойств композитных материалов различных структур (слоистые, волокнистые и др.), при описании их поведения в рамках континуальных представлений. Таким образом совершается переход от кусочно-однородной среды к однофазной.
Рассмотрим двухфазный
композитный материал, представляющий собой матрицу, в которой случайным образом
распределены включения второй фазы (армирующий элемент), имеющий приблизительно
равноосную форму. Количество включений достаточно велико на участке изменения
температуры. Пусть некая характеристика матрицы -
, а включений -
. Тогда можно представить композит, как новый материал, с
характеристиками промежуточными между характеристиками матрицы и включений,
зависящей от объемной доли этих фаз.
, (2)
Где
Подстановка (2) в (1) дает:
(3)
Имеем операторы:
(4а)
(4б)
После преобразования Фурье получаем
Уравнение
для функции Грина
и
где
(5)
- ур. Дайсона. (6)
Функция Грина
описывает однородный материал со средними характеристиками
определяемые по правилу смесей (2), а
оператор
можно назвать
оператором возмущения, поскольку он определяет форму и расположение
неоднородностей.
Решим уравнение итерациями
Вычислим
сначала
Здесь
(7)
Теперь определим
←предыдущая следующая→
1 2 3
|
|